Skip to content

Theory

Literature Review: ‘A Distributional Perspective on Reinforcement Learning’

This article assesses the research paper, ‘A Distributional Perspective on Reinforcement Learning’ by the authors, Marc G. Bellemare, Will Dabney and Remi Munos, published in the proceedings of the 34th International Conference on Machine Learning (ICML) in 2017. Bellemare et al.’s paper will be assessed on several criteria. Firstly, content… Read More »Literature Review: ‘A Distributional Perspective on Reinforcement Learning’

Continuous Learning

  The standard machine learning approach is to learn to accomplish a specific task with an associated dataset. A model is trained using the dataset and is only able to perform that one task. This is in stark contrast to animals which continue to learn throughout life and accumulate and… Read More »Continuous Learning

Some interesting finds: Acyclic hierarchical modelling and sequence unfolding

This week we have a couple of interesting links to share. From our experiments with generative hierarchical models, we claimed that the model produced by feed-forward processing should not have loops. Now we have discovered a paper by Bengio et al titled “Towards biologically plausible deep learning” [1] that supports this… Read More »Some interesting finds: Acyclic hierarchical modelling and sequence unfolding