Skip to content

credit assignment

Biologically-plausible learning rules for artificial neural networks

Artificial neural networks (ANNs) – are conceptually simple; the combination of inputs and weights in a classical ANN can be represented as a single matrix product operation followed by an elementwise nonlinearity. However, as the number of learned parameters increases, it becomes very difficult to train these networks effectively. Most… Read More »Biologically-plausible learning rules for artificial neural networks

Learning distant cause and effect using only local and immediate credit assignment

We’ve uploaded a new paper to arXiv presenting our algorithm for biologically-plausible learning of distant cause & effect using only local and immediate credit assignment. This is a big step for us – it ticks almost all our requirements for a general purpose representation. The training regime is unsupervised &… Read More »Learning distant cause and effect using only local and immediate credit assignment