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Motivation

Conventional ML models are trained on large i.i.d. datasets. Additional training
on new classes or incremental concept drift can cause catastrophic forgetting of
existing representations. Sample efficient (e.g. one-shot) and continual or lifelong
learning remain challenging [5].
A standard model for learning in the mammalian brain is CLS (Complementary
Learning System) [3]. In CLS, Neocortex and Hippocampal Formation (HF) com-
prise two complementary learning systems with bidirectional connections. Neo-
cortex learns gradually structured representations of the environment and HF
learns specifics quickly (one-shot). HF slowly consolidates memories into Neo-
cortex without interference with existing memories (continual learning), through
interleaved replay of stored memory patterns. Replay occurs when the animal
is in a passive state, and it also occurs as a response to external cues when
in an active state. In this model, the HF constitutes short-term memory (STM)
and Neocortex constitutes long-term memory (LTM). The Hippocampal model is
a promising avenue to improve conventional ML.

Contributions

In our previous work, we introduced an Artificial Hippocampal Algorithm (AHA) [2]
based on CLS. We now show that AHA can be used to complement a conven-
tional, slowly-learned ML model (LTM) in a way that is analogous to the interac-
tion of HF and Neocortex, to provide one-shot and continual learning capabilities.
Here we present preliminary results.

Related Work

Replay methods are often used in continual learning. In [7], Hippocampal replay
was inspiration for a deep generative model (GAN) that mimics past data to inter-
leave training of the ‘task solving’ model, applied to static images. The authors of
[6] used growing recurrent networks for a Hippocampal-inspired episodic module
to learn instances that are replayed to a semantic module, applied to video.

Model

The model is shown in Fig. 1. AHA rapidly encodes samples with sparse repre-
sentations that do not overlap or interfere with each other. This is achieved with
a pattern separation and pattern retrieval pathway, giving it the ability to separate
highly similar inputs as well as generalise (see [2]). AHA operates like an autoas-
sociative memory. It uses an input cue to recall and ‘reconstruct’ a corresponding
memory. AHA itself learns without externally provided labels. In this work, AHA
is modified to memorise and recall both input samples and labels, to be used to
train the LTM with supervised learning.
The LTM is pre-trained to learn visual features common to the dataset. After pre-
training, when presented with new samples (including previously unseen classes),
AHA receives input from LTM and learns combinations of these features in one-
shot (i.e. from a single exposure). Subsequently, these classes will be recognised
by AHA prompting replay to LTM. The replayed and current encodings of LTM are
interpolated, which we define as ‘Enhanced Inference’. AHA can also be used in a
passive replay mode, independent of external input. Patterns of stored memories
are replayed to LTM in a randomly interleaved fashion, in an ‘internal’ training
phase. Memories are consolidated to long term memory, LTM, and the short term
memories can be overwritten. LTM is able to learn new classes from only one
exposure.
LTM learns incrementally. An unsupervised single layer sparse convolutional au-
toencoder learns features and a single layer softmax is used as a classifier. The
classifier is trained with supervised learning in a pre-training phase, and during
consolidation.
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Fig. 1: AHA+LTM in operation (Evaluation phase, see Fig. 2): During training, AHA learns to reconstruct Label and Image in

one-shot. While in STM, a different character image cues recall of the learnt Image and Label and the labels are interpolated for

‘Enhanced Inference’. Offline replay consolidates memory into LTM, also improving long term performance.

Experimental Method

The overall task is classification of Omniglot characters, Fig. 3. The process is illustrated in
a flowchart, Fig. 2.
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Fig. 2: Experimental Method Flowchart

The consolidation stage is achieved as follows. AHA repeatedly recalls (Image, Label) pairs
from internally generated random cues (uniformly sampled). The resulting outputs are fed
back into the system to retrieve a crisper reconstruction and more accurate label classifica-
tion (referred to as big-loop recurrence [3]). A threshold is used to filter out remaining faint
images. The ‘random recall’ procedure is repeated for 25 steps per run, and the resulting
(Image, Label) pairs are stored in a replay buffer for consolidation. The size of the replay
buffer was chosen to make it highly probable to recall all of the memorised samples, and
was optimised empirically. We randomly sample from the replay buffer (with a bias towards
the unseen sample) and allow the LTM to train on these samples for 160 steps. The replay
buffer sampling mechanism ensures that there is at least one unseen sample (based on the
label, as predicted by AHA).

Omniglot Dataset

Fig. 3: Omniglot: Handwritten characters from a range of alphabets of different styles. Modified from [4]

Results

Classification using the slowly learned representation of LTM achieves accuracy
of 97.5% overall, 45% on the one-shot classes. Enhanced Inference lowers
accuracy to 80% overall, but boosts it from 45% to 60% on one-shot classes.
After consolidation the accuracy of LTM is increased to 98% overall and 60% on
the one-shot classes.

Model Accuracy (per run) Accuracy (per
one-shot learnt class)

LTM 97.5% 45.0%
LTM+AHA - Enhanced
Inference

80% 60%

LTM+AHA -
Consolidation

98% 60%

Tab. 1: Classification accuracy for baseline (LTM) and LTM+AHA:. AHA dramatically improved one-shot

learning performance and was able to consolidate that learning into Long Term Memory (LTM)

Conclusions and Future Work

This work shows how an artificial hippocampal algorithm can be used in a practi-
cal system to improve a standard supervised learning model, enabling it to learn
new classes after only one exposure. We are currently running similar experi-
ments with the continual fewshot learning framework [1] comparing performance
to several algorithms on Omniglot and Slimagenet.
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